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1. Background

Estimating the parameters of exponentially damped sinusoidal waveforms is 
an important problem in numerous scientific disciplines, including telecommu-
nication engineering [10], power engineering [9], system identification [1], and 
spectroscopy [6]. The reference literature covering the problem is every extensive, 
including [4] and [5].

This paper describes simulated and experimental tests intended to examine 
the results obtained from two different methods of data analysis used to determine 
the angular frequency and the attenuation (damping) rate in sinusoidal signals. 
Both methods included (i) predictive modelling and (ii) gradient optimization. 
An assumption used for both tests was that the source of the investigated signal 
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was not directly accessible; for a symmetric signal, this meant that the deterministic 
component included a stochastic waveform.

2. Classic signal frequency analysis methods

Time-domain, statistical, correlational, and frequency analysis methods are all 
used to investigate signals. If the spectrum of a signal needs to be known, the fre-
quency analysis method is used.

The classic frequency analysis methods applied to continuous signals include 
the integral Fourier transform and two types of Fourier series, trigonometric and 
complex. These are popular due to their benefits: they offer both a sound theore-
tical basis and physical interpretation, with simple relations to time-domain and 
correlational methods [11].

Numerical frequency analysis of signals has gained high significance in recent 
years. Its primary tool is the discrete Fourier transform (DFT) algorithm and its 
numerical implementations known as ‘fast Fourier transforms’ (FFT). FFT is also 
the initial point for other signal analysis and processing methods, including cosine 
and sine transforms, discrete two and multidimensional transforms, adaptive 
methods, digital filtering, and much more.

3. Parametric methods in the frequency analysis of signals

Spectral analysis tools based on Fourier methods have been both widely investigated 
and applied. However, their application may be limited sometimes, especially when 
the signal to be analysed is represented by a vector with a small sample size (e.g. several 
dozen samples), which provides insufficient frequency resolution for the results.

A feasible alternative in these situations is parametric modelling. The parametric 
modelling methods are generally based on a relationship between the analysed signal 
and a certain generative model. Generative models have a variety of uses: they can 
help identify the primary and secondary frequency responses of a signal, repro-
duce the deterministic component [1], or enable signal prediction or compression, 
etc. The initial point for parametrizing a generative model is the assumption that 
the waveform being analysed is the transient response of a digital filter to a defined 
input, the spectral density function of which is constant (at a boundary condition). 
The digital filter transforms, and while this transformation is not a response achieved 
by physical means, it features attributes which make the response very convenient 
in different theoretical problems. The input transformation method is defined by 
factors of transmittance Z of the said discrete system, and these factors represent 
the discrete system.
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Digital filters applied in modelling can be recursive or non-recursive. The choice 
here depends on the assumptions applied to the type of spectrum of the analysed 
signal. Absorption spectra are analysed with non-recursive MA (moving average) 
models. Emission spectra are analysed with recursive AR (autoregressive) models [2].

The linear prediction method is a form of parametric modelling. The concept 
of presenting the method is based on the initial property of the linear relation-
ship between the samples of a sinusoidal signal. In more precise terms, a sample 
of the sinusoidal signal can be expressed as a total of an exact subset of its adjacent 
samples multiplied by certain values. These values are polynomial factors of the nume-
rator or the denominator of transmittance Z of a defined digital filter, which itself is 
a generative system which outputs the analysed waveform. The wording of the two 
preceding sentences can be met with some reservation, since it does not formulate 
the assumptions for the general nature of the signal originating from a certain physical 
effect (astronomical, geophysical, etc.), an effect that cannot be controlled. It is also 
not possible to access the signal generated by an object; only a version of the signal 
is accessible and features a deterministic (information-carrying) component and 
a stochastic component. Ultimately, the statement is valid that the representation 
of a signal derived by the application of a predictive (parametric) model is the best 
representation of the signal’s deterministic component, while not being a represen-
tation of the signal that is recorded, measured or generated by periodic recording 
of the readings of certain measuring devices or trends.

The wording of a generally construed spectral analysis is followed by a mathe-
matical description of the analysed signal, complete with the information about its 
predictive modelling. Putting these two parts in a single section stresses the impor-
tance of certain aspects of the non-deterministic nature of the analysed signals and 
the will of the authors to endow the contents with a better fluency, which might not 
have been equally possible had the two parts been discussed separately. Later, methods 
are shown which enable estimation of the parameters of a noisy, exponentially dam-
ped sinusoidal signal. Given that the concepts from which these data analysis tools 
stem differ widely, it seems to be of interest to evaluate their outputs. The results are 
shown in Sections 7 and 8, while Section 9 contains the final conclusions.

4. Predictive methods of parametric modelling & the model  
of the analysed signal

An exponentially damped sinusoidal signal was defined as follows:

	 [ ] ( ) sin dn
dx n A n e−= Ω +Φ 	 (1)

with: 	 A — initial amplitude of the sinusoidal signal; 
		  Ω — sinusoidal signal angular frequency; 
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		  Φ — initial phase of the sinusoidal signal; 
		  d — attenuation rate of the sinusoidal signal; 
		  n — argument of the sine function and the exponential function,  

	 also the ordinal number during the sampling period, n = 1,2,3,…
The stochastic signal, used to model the signal noise, was described with this 

function:

	 [ ]
1

0

[ ]
N

s i
i

x n n i 
−

=

= −∑ 	 (2)

with: 	 ε [n] — white noise implementation; 
		  αi — actual factors; 
		  N — natural number.

The expected value of  [ ]sx n  for this signal was zero, whereas the root-mean-
-square value (variance) was 2 .

sx
Ultimately, the analysed signal was converted into the following:

	 [ ] [ ] [ ].d sx n x n x n= + 	 (3)

Given the component expressed with formula (1), the following was proven:

	 [ ] [ ] [ ]1 21 2d d dx n a x n a x n= − + − 	 (4)

with:	 a1, a2 — model factors (the prediction factors).
	
The formula (4) implies that the numerical value that described the actual 

sinusoidal signal (1) sample could be defined by the numerical values of the two 
previous samples (identified by lower index values) and the ‘prediction’ factors.

Factors a1 and a2 allowed the determination of the angular frequency and 
the attenuation rate, shown on the right side of formula (1). The determination 
involved the following formulas:

	
2ln( ) ,

2
ad −

= 	 (5)

	 1arr cos( ).
2

da eΩ = 	 (6)

However, both are parameters of signal (1). Samples are not directly accessible 
from it. Samples of signal (3) are accessible. Hence the notation of (5) and (6) should 
be converted using these formulas:

	
2ln( ) ,

2
ˆˆ ad − −

= 	 (7)
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1 ˆarr cos( )

2
ˆˆ da eΩ = 	 (8)

with:	 1 2ˆ ˆ,a a  — prediction factor.

The model parameters were determined by substituting (4) in (3), which gave 
notation (9).
	 [ ] [ ] [ ]1 21ˆ ˆ 2 .x n a x n a x n= − + − 	 (9)

At least two formulas were required at this point. Both formed a set of equations 
which could be solved with matrix algebra tools and their numerical implemen-
tations. The second equation in the set was defined by using, on the left and right 
sides of formula (9), a numerical value lower or higher by one than the natural 
number n. In practice, however, sets of equations are implemented with the number 
of equations higher than the number of the unknowns. In this case, parameters (7) 
and (8) were derived with a numerical solution of a matrix equation with a rectan-
gular matrix. This procedure usually reduces the effect of the stochastic component 
on the quality of the results.

When a signal was a superposition of more than one sinusoidal waveform, 
the total on the right side of equation (4) had twice as many components as the value 
of the number of sinusoidal waveforms in the analysed signal (1).

This procedure is called the Prony method. Factors 1 2ˆ ˆanda a  and were rela-
ted to the denominator polynomial of a certain transmittance, H(z), which had 
the following form:

	 ( )
1

0 1
1 2

1 21

ˆ ˆ
ˆ

ˆ ˆ
b b z

H z
a z a z

−

− −

+
=

− − 	 (10)

with: 	 1 2ˆ ˆ,a a  — proper estimations of factors a1 and a2 in the formula (4); 
		  0 1 ˆ ˆ,b b  — estimations of the factors in the numerator polynomial  

	 of the digital filter transmitter (not included in this description).

The pulse response of the digital filter described by transmittance Z, expressed 
by formula (10), was the model for the signal expressed by formula (1). The signal 
featured an angular frequency described by (7) and the attenuation rate described 
by (8). The remaining signal parameters could be derived with matrix equations, 
which are not shown here.

To improve the characteristics of estimation of (7) and (8), a modification 
of the procedure described with the formulas (1), (2), (3), (4), (5), (6), (7), (8), (9), 
(10) could be applied. First, the Prony method was applied to determine the first 
estimation of the denominator polynomial factors of transmittance (10), i.e.:
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( ) ( )1 1(1) (1)
1 2 ;ˆ ˆ pronya a a a a = =  	

(11)

with: 	 a(1) — vector with the denominator factors of the rational function 
	 on the right side of the equation (10).
Next, successive approximations of vector a(2), a(3),…, a(p) were derived (p was 

a natural number). This was achieved with an additional digital filter, which prepro-
cessed the signal associated with each successive iteration. The preprocessing related 
to the production of the factors of vector a(p) was repeated (p-1) times on the fil-
tered signal. This concept may seem debatable at first, given the risk of amplitude 
and phase distortions from the successive p-number of signal implementations, 
the time representation of which could negatively affect the final result of estima-
ting the parameters of signal (1). Note, however, that the next step of the procedure 
included (i) the waveform filtered in the given iteration and (ii) the modifica-
tions of the waveform produced in the previous iteration; ultimately, this allowed 
the sought numerical values to be produced, which were decreasingly determined 
by the characteristics of the stochastic component (2). To illustrate certain aspects 
of the procedure, a simple numerical experiment was done with the objective of pre-
senting the frequency structure of the signals applied in the calculations of successive 
approximations of vector a(p). A waveform described by formula (3) was used with 
the deterministic components, being a 0.0249 Hz sinusoidal signal with the stochastic 
component as an implementation of white noise at a variance 10 times lower than 
the RMS value of the sine wave. The Welch method [2] was applied to calculate 
the spectral density estimators of the power of the signals from the successive ite-
rations. The results are shown in Fig. 1, Which shows that the signal described with 

Fig. 1. Result of the spectral density estimation ran on three signals produced  
by the Steiglitz-McBride procedure.
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formula (3) essentially had no noise reduction applied; the signal had its 0.0249 Hz 
deterministic component (identified by the formula (1)) enhanced. This can be 
proven by comparing the interval between the frequency representation of the same 
sinusoidal component and the mean level related to the spectral representation 
of noise, which was on the same mean level in each plot of the function (iteration 
1: 40 dB, iteration 2: 90 dB).

To complete this description of the problem of predictive modelling, note that 
the iterative approach used here is known as the Steiglitz-McBride method.

Later, a method is discussed which attempts to match the available data to a spe-
cific mathematical model.

5. Optimization methods for determining signal parameters

More often than not, the analytical form of the deterministic component of a signal, 
the parameters of which are being examined, is known to be a certain function. This 
function can be exponential, multinomial, or trigonometric. It is then rational to 
determine the parameters of this function by matching it to the available (noisy) 
data. This matching or adjustment must meet a specific criterion, which is a quality 
indicator defined by an objective function, which itself is minimized or maximized.

This problem is solved with gradient optimization methods. Both local and 
global gradient optimization methods exist. This section focuses on local gradient 
optimization methods, in which the produced point of the solution relates to a defi-
ned initial point, the spatial position of which (if a multidimensional generality is 
assumed) is critical, given the difficulties imposed by the multimodality attributable 
to the objective function. The spatial position was related to a risk of producing a final 
solution associated with one of the local minimum values. The values of the function 
discussed (see formula (12)) near these minimum values could be very different, 
making the reasoning behind the application of the methods questionable. Hence, 
what was relevant was the quality of the initial point, the implementation of which 
required data preprocessing algorithms.

The objective function could have the following form:

	 ( ) [ ] [ ]( )2
[ ]dJ n E x n x n= − 	 (12)

with: 	 J(n) — objective function; 
		  E[.] — expected value symbol; all remaining symbols are as defined  

	 in formulas (3) and (1), respectively.

The function (12) was minimized due to the parameters of signal (1) which 
formed the vector (13):
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	 [    ]est est est estw A d= Ω 	 (13)

with all variables analogous to those shown in formula (1); hence, , ,est estA A→ Ω→Ω  
, .est estd d → →

The vector which defined the initial point of the algorithm was expressed as follows:

	 ( ) ( ) ( ) ( )1 1 1 1(1) [    ]est est est estw A d= Ω 	 (14)

with the variables in superscript being related to the variables present in formula (13).
The numerical values of the coordinates on the right side of equation (14), 

essential to initialize the calculation process (as relevant to criterion (12)) mat-
ching the waveform of (3) to the waveform of (1), were obtained with more or 
less advanced processing of the analysed signal. The algorithms involved are not 
presented here, given their relatively simple structure. See references [7] and [8] 
for a detailed solution to the problem of determining the model of an exponential 
function for noisy data.

6 . Implementation of the Hilbert transform in determining  
the sinusoidal signal parameters

One of the tools available for a viable solution to the problem of estimating 
the parameters of the waveforms that this paper concerns was the discrete Hilbert 
transform. This algorithm was used to implement a complex analytical signal. 
Its real part was a pre-set signal; the imaginary part was the Hilbert transform 
of the algorithm. The obtained waveform allowed demodulation of the actual signal 
amplitude, and determination of the angular frequency and the attenuation rate 
of signal (1). The details of this data analysis tool are not presented here; they are 
available in numerous references [11].

7. Simulated test results

This section shows the results of the simulated and experimental tests.
The objective of the simulated tests was to determine the following: angular 

frequency , attenuation rate d, initial amplitude A, and initial phase Φ of signal 
(1) when the additive waveform (3) was accessible and related to the stochastic 
component. The stochastic component was defined by determining the following 
parameters in formula (2):
	 N = 8
	 a0 = a1 = … = a7 = 1/8	 (14)
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and with the following relationship:

	
2 ,

sx e xW E = 	 (15)

with: 	 1 1  , ;
10 100eW =  Ex — energy contained in signal (1); 

		  2
sx  — RMS value (variance) of signal (2).

Parameter We was a constant which determined the relation between the RMS 
values of signals (2) and (1). The parameter was defined to produce an SNR (signal-
-to-noise ratio) of 10 and 20 dB, respectively.

Table 1
Parameters of a one-component exponentially damped sinusoidal signal expressed with formula (1)

Parameter Initial amplitude
[V]

Angular frequency
[rad/s]

Initial phase
[°]

Attenuation rate
[1/s]

1.000 0.1497 –Π/6 0.020

A single numerical experiment was used to generate 64 transient waveforms 
described by formula (3). The deterministic component of each waveform was given by 
formula (1), with its parameters being shown in Table 1. Two 64-element sets of signals 
were used. Each set had 128 samples and was related to a specific value of parameter 
We. A single waveform (3) produced a 4-element vector of estimators of the parameters 
for the deterministic component of (1), i.e. initial amplitude A, angular frequency Ω, 
initial phase Φ, and attenuation ratio d. The vector was expressed as follows:

	 [   ]est est est est estw A dΦΩ= 	 (16)

with: 	 Aest — parameter A estimator; 
		  est — parameter Ω estimator; 
		  est — parameter Φ estimator; 
		  dest — parameter d estimator.

The parameters of signal (1) were identified with a Steiglitz-McBride algori-
thm (algorithm 1), discussed in Section 4, and a gradient optimisation algorithm 
(algorithm 2), discussed in Section 5. The deterministic component of (1) was 
reproduced with the parameter vector expressed with (16). The reproduced signal 
had a form determined by formula (17).

	 ( )[ ]  sin estd n
o est est estx n A n e−= Ω +Φ 	 (17)

with: 	 xo[n] — reproduced signal, n — sample signal index;  
	 all other parameters are as explained for formula (16).
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The results of the simulated tests are shown in Figs. 2 and 3, complemented by 
Tables 2 and 3. The authors wished to visualise all these results, and the figures are 
divided into two sections each. Each section features a reference waveform plotted 
with a bold, black line. The parameters of the reference waveform are known and 
referential for the results obtained from the identification procedures (algorithms 1 
and 3) discussed in Sections 3 and 4. Each waveform has 4 curves grouped in pairs in its 
vicinity (the yellow curves shown in Fig. 3 are discussed later). The first pair was plotted 
with dotts. The corresponding reproduced waveforms were generated with the con-
tents of vector (16), which corresponded to the highest (Ωest,max) and lowest (Ωest,min) 
values of Ωest. The other pair of curves, shown with dashed lines, are the exponential 
waveforms generated with the highest (dest,max) and lowest (dest,min) values of dest that 
defined the other component of vector (16). The top left corner of each chart features 
a section with the reference waveform plotted (the bold black line) and all curves 
reproduced with the contents of vector (16). The latter are shown with thin red lines.

Table 2
List of the statistical parameters in the sets of parameters of signal (1) for two different SNR values 
std — standard deviation; mean — mean value from the 64-element set Steiglitz-McBride algorithm 

(algorithm 1)

Parameter/SNR [dB]
A [V] Ω [rad/s] d [1/s] Φ [°]

mean std mean std mean std mean std

10 1.0208 0.0704 0.1501 0.003 0.0210 0.003 –30.16 0.096

20 1.0057 0.0389 0.1497 0.001 0.0201 0.001 –30.06 0.047

Table 3
List of the statistical parameters in the sets of parameters of signal (1) for two different SNR values std — 
standard deviation; mean — mean value from the 64-element set Optimisation algorithm (algorithm 2)

Parameter/SNR [dB]
A [V] Ω [rad/s] d [1/s] Φ [°]

mean std mean std mean std mean std

10 0.9651 0.1861 0.1496 0.003 0.0203 0.002 –29.67 5.0146

20 0.9940 0.0382 0.1497 0.001 0.0200 0.001 –29.73 4.7591

The results shown in Figs. 2 and 3 suggest a similar effectiveness of both identifica-
tion procedures presented in Sections 4 and 5. A comparison between the visualisations 
shown in the top right corner section provides some general conclusions. The thin red 
line plots generated with the parameters of vector (16) reproduced the reference signal to 
an accuracy of a little over 10% (at transient values). The extreme angular frequencies were 
similar (algorithm 1 to algorithm 2, 0.1436 to 0.1440 rad/s vs. 0.1564 to 0.1570 rad/s); 
major differences occurred at the fourth decimal place and higher. The maximum 
angular frequency was 0.0291 s–1 from algorithm 1 and 2 0.0257 s–1 from algorithm 2. 
Tables 2 and 3 show that the statistical values calculated for the entire set of estimated 
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Fig. 2. Results provided by the Steiglitz-McBride algorithm: simulated waveforms.
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parameters proved that the parametric model-based procedure was more effective. 
The highest noticeable differences applied to the mean initial amplitude value, A. This is 
especially evident for SNR = 10 dB (0.9651 to 1.0208 V) and standard deviation (0.0704 
to 0.1861 V). A standard deviation this high was caused by the inclusion of the initial 
amplitude values in the set, plotted with the solid yellow line in Fig. 3. The solid yellow 
plot lines represent the non-damped waveforms at a maximum value between 0.1 and 
0.5 V. In this case, optimisation failed, and the resulting solution was associated with 
vector (16) for which the objective function (12) reached one of the local minimum 
values, which were ineffective at effectively completing the parameter estimations 
of the component of (1).

8. Experimental test results

This section of the paper presents the results of the experimental tests. The objec-
tive of the experimental tests was to determine the frequency of vibration present 
in a system comprising a power transformer rated at 5 kVA, connected to a capacitive 
resistance load (R = 27 Ω, C = 10 μF). The steady state condition of this simple power 
system was disturbed by connecting it for a few milliseconds to a thyristor system, 
which applied an additional resistance load. This resulted in a distorted current with 
an amplitude of 150 A, the presence of which in the power system initiated a tran-
sient state and sine vibrations in the voltage waveform, the transient value of which 

Fig. 4. Results provided by the Steiglitz-McBride algorithm: actual waveforms.
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was recorded at a sampling rate of 51.2 kHz. The objective here was to determine 
the angular frequency and attenuation rate of the vibration.

The final results are shown in Figs. 4 and 5. The charts represent the recorded 
waveforms, plotted as dashed red lines, and the reproduced waveforms related to 
the parameters determined with the identification procedure. The figure shows 
5 pairs of waveforms, 10 waveforms in total. As the authors wanted to show this 
number of curves in a single graphic window, a direct component was added to 4 
of the curves to prevent overlapping of the plots.

Given the charts and the numerical values shown in Figs. 3 and 4, the vibration 
angular frequency was nearly 15 kHz, which corresponded to a frequency response 
of approx. 2.4 kHz. The mean angular frequency value was 15 283 rad/s for algo-
rithm 1 and 15 311 rad/s for algorithm 2 (with a relative error of 0.2 %), whereas 
the respective attenuation rate values were 78 687 s–1 and 7690 s–1 (with a relative 
error of 0.04%). The visualized results for the specific pairs of waveforms provides 
a satisfactory compliance with the criterion of time-domain matching of the indi-
vidual waveforms in each pair.

9. Conclusions

The objective of the tests discussed here was to compare the quality of the results 
determined using two algorithms to process an exponentially damped sinusoidal 

Fig. 5. Results provided by the Steiglitz-McBride algorithm: Actual waveforms.
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signal. The results applied to the parameter estimation quality of a deterministic 
signal. An assumption was adopted for these tests, that the discrete transient 
implementation of the deterministic signal was inaccessible, whereas the additive 
signal was accessible. This approach was justified by measurement practice, which 
means the preconditions imposed by the specifics of recording a waveforms with 
measurement noise. These conditions occur in actual research and testing in many 
fields of science, including astrophysics, medical diagnostics, materials engineering, 
chemical engineering etc.
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P. FIGOŃ

Zastosowanie metod modelowania parametrycznego do estymacji parametrów 
sygnałów sinusoidalnych tłumionych

Streszczenie. W artykule opisano wyniki analiz, których celem było uzyskanie informacji o wybranych 
parametrach składowej deterministycznej sygnału będącego sumą dwóch komponentów — sinuso-
idalnego tłumionego wykładniczo oraz stochastycznego. 
Słowa kluczowe: predykcja liniowa, optymalizacja, sygnał analityczny
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